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The affinity of SARS-CoV2 (Cv19) envelope proteins for 
angiotensin-converting enzyme 2 (ACE2) facilitates infection of 
human cells [1]. ACE2 cell receptors are present within several 
organ systems and expression in lung tissues (elevated in chronic 
smokers) increases significantly in airways epithelial cells infect-
ed with SARS-CoV [2]. There is 80% genome sequence identity 
between SARS-CoV2 and SARS-CoV1, with the latter’s recep-
tor-binding motif (RBM) for ACE2 comprising of residues 424-
494 [3,4]. The amino acid sequence of the Cv19 Spike S1 recep-
tor-binding domain (RBD) is available [5]. ACE enzymes and 
angiotensin peptides are essential components of the complex 
renin-angiotensin system (RAS) [1]. Individual susceptibility to 
Cv19 infection may be partially explained by natural variation 
within the different components of RAS [6]. 

ACE carboxypeptidases are ectoenzymes that cleave ami-
no acid residues from the C-terminus of proteins. Angiotensin 
2 (ANGII) an octapeptide (1-8) formed from angiotensin I (1-
10) by ACE is subsequently depleted of amino acids by ami-
nopeptidases to ANGIII and smaller peptides with various ef-
fects on blood pressure, aldosterone and sodium retention [7]. 
The ACE2 glycoprotein, integral to cell membranes, is anchored 
at the hydrophobic C-terminus with an extracellular N-terminal 
region containing the catalytic motif of 5 amino acid residues 
[8,9]. Catalysis of ANG (1-7) from ANGII substrate by ACE2 
is completely inhibited in vitro by high concentrations of the 
C-terminal dipeptide, Pro.Phe [10]. ACE2 is also susceptible to 
inhibition or activation by other di- and tripeptides and natural-

ly occurring small molecular weight compounds [9,11,12]. The 
primary physiologic actions of ANGII are mediated via the AT1 
receptor (AT1R). The agonist adopts an extended structure with-
in the binding pocket; N-terminal Val3 interacts with the second 
extracellular loop, whereas the C-terminus interacts with resi-
dues of the 7th transmembrane domain [13]. Asp1, Arg2, Tyr4, 
Phe8, determine the binding affinity and specificity of ANGII for 
AT1R, whereas Tyr4, His6, Pro7 and Phe8 account for agonist 
potency [14]. Less is known about the requirements for the rec-
ognition of ANGII by ACE2.

Several clinically promising antiviral di- and tripeptide 
drugs have been developed against HIV and Hepatitis C. Knowl-
edge of the full amino acid sequences of ACE2 and SARS-CoV 
RBD and the application of sophisticated computational tech-
niques have yet to provide blocking agents for clinical use [15]. 
An alternative approach focuses on drug repurposing, the testing 
of existing compounds for antiviral properties. AT1R blockers 
such as losartan provide one strategy to reduce the initial infec-
tive stage of Cv19 and resveratrol, a health supplement and di-
etary constituent, is another compound of interest [16]. Gordon 
and co-workers have recently identified a significant number of 
drugs that target interaction between viral and human proteins 
[17]. The drugs, including 4-7 residue peptides and cyclic pep-
tides, have been assessed for their in vitro effects on the infec-
tion, growth and cytotoxicity of SARS-CoV2. 

Notwithstanding the evidence supporting a link between 
the ACE2 receptor and SARS-CoV infection, histopathological 

The peptidase entity of angiotensin-converting enzyme 2 (ACE2) accommodates the  receptor-binding domain 
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these observations may prove useful for the further development of SARS-CoV2 antiviral drugs.

Keywords: angiotensin-converting enzyme 2, angiotensin II, antiviral drugs, molecular structure; spike protein, 
SARS-CoV2, sigma receptor 

Abstract

Introduction



Jpn J Med 2020,3:2

www.japanjournalofmedicine.com

448

studies do not all support this mechanism [18]. The deficit of 
data on the relationship between ACE2 expression and Cv19 
mortality, and the requirement for therapeutic agents to inhibit 
Cv19 infection informs the need for further research. Search of 
the S-protein sequence of Cv19 reveals two tripeptide sequenc-
es, valine/arginine/aspartate (VRD) and arginine/valine/tyrosine 
(RVY) each occurring twice within the protein [5]. These four 
amino acid residues are also present as the sequence aspartate/ar-
ginine/valine/tyrosine (DRVY) within the ANGII structure [19]. 
This study focuses on the VRD amino acid sequence common 
to ANGII and the S- protein of SARS-CoV2. A computer-aided 
modeling approach is applied to the investigation of molecular 
similarity within the structures of VRD, ligands of the ANGII 
system, sigma (σ) antiviral inhibitors and structurally similar 
compounds of potential interest. 

Methods
The Nemesis software program (Oxford Molecular version 

2.1) is used to build molecular structures from contents of the 
program fragment file and minimise structures by conforma-
tional analysis. The VRD peptide and compound structures are 
minimum energy conformers in an uncharged form. The com-
putational program fits selected paired molecular structures on 
a three-point basis. Fitting-points comprise of atoms of similar 
type and partial charge within compound and peptide structures, 
identified in the figures with respect to amino acid residue la-
bels. Compound colour-coded atoms in the figures identify li-
gand fitting-points: carbon-green, nitrogen-blue, oxygen-red, 
sulphur-yellow. To improve on presentation, bond order within 
the molecular structures is not shown and some peptide tem-
plates are repositioned with respect to each other to provide a 
better image of the compounds. The Nemesis program computes 
goodness-of-fit values, in respect of inter-atomic distance at each 
fitting point and root mean square (RMS) value.

Results
Table 1 lists the investigated compounds with their primary 

properties and fitting data. The data, encapsulating the fit of each 
structure to the val/arg/asp (VRD) residues of ANGII (Fig.1;2), 
demonstrate good fitting values with interatomic distances and 
RMS values respectively ≤0.16Å and ≤0.0200Å. The fits of the 
ATR ligands BMIC, losartan and L-162313 demonstrate the im-
portance of an imidazole/imidazopyridine moiety (Fig.1; tem-
plates 3-6). In contrast to BMIC and losartan, L-162313 is an 
ATR agonist with a fitting-point that can be shared by its sulpho-
nylcarbamate group and the carbonyl of valine (6). Alternative 
cyclic ring systems replace the imidazole moiety in structures 
other than camostat (7). The fits of resveratrol (11,12) are repli-
cated by steroid hormone structures (9,10,13,14). Progesterone 
and dexamethasone provide the best steroid fits to VRD peptide 
and one that is replicated by testosterone (0.02Å, 0.08Å, 0.07Å; 
RMS 0.0069Å – not shown). 

Compound fits to the peptide template in Figs. 2 and 3 gen-
erally follow the above pattern. Additional fitting characteristics 
of the structures (Fig. 2) include the C11 fitting point of rimca-
zole and the carbonyl group (C4O4) of haloperidol. In gener-
al, peptide fitting-points of the above compounds are found on 
two distinct cyclic rings. The first ring system has one or two 

Figure 1. Angiotensin II (1) and N-terminal sequence of angiotensin II (2) 
with compound fits (3-14) to the N-terminal peptide template (grey): 3) BMIC, 
4) losartan, 5) L-162313, 6) L-162313, 7) camostat, 8) lovastatin, 9) dexameth-
asone, 10) progesterone, 11) resveratrol, 12) resveratrol, 13) 17-β estradiol, 14) 
17-β estradiol.

Figure 2. Compound fits (1-11) to the N-terminal peptide template (grey): 1) 
rimcazole, 2) cloperazine, 3) astemizole, 4) haloperidol, 5) doxorubicin, 6) 
pimozide, 7) verapamil, 8) amiodarone, 9) thalidomide, 10) prostaglandin I2, 
11) MPFA.
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fitting-points relating to the arginine guanidinium group and the 
second has fitting-points for peptide C4, C5 or C10. These cy-
clic rings are variously separated by a third cyclic ring, a short 
alkyl chain, or form part of a fused ring system in steroid-like 
structures. The various ring systems fitting to the arginine guan-
idinium group include aromatic and non aromatic rings (imidaz-
ole, piperazine, piperidine, chromone, furan) bicyclic rings (ben-
zeneimidazo, indole, naphthalene, benzofuran) and larger ring 
systems (imidazopurine, tetracene). Templates 1-7 in Fig.2 in-
clude the structures of antiviral sigma (σ) receptor ligands iden-
tified by Gordon (daunorubicin is replaced here by doxorubicin) 
[17]. The peptide fitting-points of the σ ligands, including lovas-
tatin and progesterone structures, are quite different in describing 
triangular pharmacophores of dimensions (Å) 1.25-2.5, 4.8-7.9, 
6.3-8.1, in area 4.4 - 10.1 Å2. Fig. 2 also gives the structures of 
the prostanoid PgI2 and natural lipid MPFA with fits based on a 
furan ring and carboxyl group (10,11). 

Fig. 3 expands on the pharmacological diversity within the 
compounds investigated. These structures, including classical 
receptor agonists and antagonists and natural compounds with 
more general therapeutic properties, conform to fitting patterns 
identified in the previous figures. 5-hydroxytryptamine (5-HT) 
antagonists and the metabolite 5-hydroxyindoleacetic acid pro-
vide several different fits to the VRD peptide template. The 
ACE2 inhibitor structures AEAE and nicotianamine (11,12) dif-
fer in not fitting to the arginine guanidinium group and superim-
posing along the axis of the peptide chain. Of the compounds 
listed in Table 1, 70% fit solely to the arginine residue and 21% 
to the arginine-aspartate dipeptide.

Figure 3. Compound fits (1-12) to the N-terminal peptide template (grey): 
1) lisuride, 2) RX-821002, 3) KF-26777, 4) CJ-1639, 5) L-741626, 6) LY-
344864, 7) silibinin, 8) curcumin, 9) BVT-5182, 10) 5-hydroxyindole acetic 
acid, 11) nicotianamine, 12) AEAE

Compound Target / 
descriptor

Fitting 
points

Interatomic
distances (Å)

RMS 
(Å)

5-hydroxy-
indole acetic 
acid

 metabolite          C10C5C9 0.08,0.05,0.05 0.0012

17-βE E C10C5C9 0.03,0.16,0.14 0.0123

17-βE E C10C5C9 0.12,0.16,0.05 0.0175

AEAE ACE2 N1N2O10 0.05,0.03,0.06 0.0137

amiodarone ion channels, 
σ

C10C5C9 0.09,0.15,0.08 0.0143

astemizole H C11C10C9 0.09,0.05,0.10 0.0079

BMIC AT N4C9C4 0.04,0.05,0.01 0.0044

BV-T5182 5-HT C10C5C9 0.09,0.10,0.14 0.0041

CJ-1639 D N5C9C10 0.02,0.02,0.01 0.0021

camostat serine pro-
tease

C11C10C9 0.06,0.06,0.05 0.0021

cloperastine H, σ C10C5N2 0.03,0.02,0.05 0.0019

curcumin protective 
agent

C10C5C9 0.04,0.11,0.09 0.0065

dexametha-
sone

steroid C10C5C9 0.01,0.04,0.04 0.0034

doxorubicin anti-neoplas-
tic

C9C5C10 0.08,0.15,0.08 0.0108

haloperidol D, σ O4C4C9 0.01,0.09,0.09 0.0040

KF-26777 A C10C5C9 0.10,0.11,0.03 0.0114

L-162,313 AT N4C9C4 0.01,0.14,0.13 0.0066

L-162,313 AT C4O12C9 0.12,0.06,0.16 0.0200

L-741626 D, 5-HT N4C9C10 0.03,0.09,0.06 0.0068

lisuride α, D, 5-HT N5C9C5 0.03,0.08,0.10 0.0040

losartan AT N4C9C4 0.08,0.01,0.09 0.0034

lovastatin statin, σ C4C5C9 0.05,0.01,0,04 0.0013

LY-344864 5-HT N4C9N1 0.11,0.06,0.05 0.0060

MPFA antioxidant N4C9C10 0.09,0.06,0.15 0.0017

nicotianamine ACE2 N2C10C5 0.08,0.07,0.06 0.0051

pimozide D, 5-HT, H, σ N4C9C5 0.09,0.03,0.10 0.0048

progesterone E, σ C10C5C9 0.02,0.08,0.07 0.0069

prostaglan-
din I2

prostanoid N5C9C5 0.14, 0.08,0.20 0.0056

RX-821002 α C9C5C10 0.03,0.09,0.11 0.0052

resveratrol protective 
agent

C10C5C9 0.05,0.13,0.12 0.0069

reveratrol protective 
agent

C10C5C9 0.04,0.12,0.13 0.0057

rimcazole σ C11C10N5 0.04,0.03,0.05 0.0017

silibinin protective 
agent

C10C5C9 0.06,0.06,0.01 0.0030

thalidomide anti-neoplas-
tic

C9C5C10 0.03,0.12,0.11 0.0029

verapamil ion channels, 
σ 

C10C5C9 0.06,0.06,0.04 0.0018

Table 1. Fitting data of compounds and the val/arg/asp peptide

Compounds: AEAE: N-(2-aminoethyl)-1-aziridineethanamine; BMIC: 
5-butyl-methyl-imidazole carboxylate 30; MPFA: 3-methyl-5-pentyl-2-furan-
pentanoic acid
Receptors: α: Adrenergic, σ: sigma; A: adenosine; AT: angiotensin, D: dopa-
mine; E: estrogen; H: histamine; 5-HT: serotonin
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Discussion
The results demonstrate relative molecular similarity within 

the structures of σ receptor ligands, compounds that target the 
angiotensin pathway, and a tripeptide sequence that contributes 
to the structures of ANGII and SARS-CoV2 S-protein. The VRD 
sequence is also shared by ANG1-9 and ANG1-7 but not by AN-
GIII. Molecular similarity within the arginine residue, statin and 
AT1R compounds is perhaps not surprising, as their therapeu-
tic effects in RAS compromised patients are partly due to nitric 
oxide promoting properties [20]. AT1R blockers and resveratrol 
are recognized as potential SARS-CoV2 antivirals. Resveratrol 
displays inhibitory effects against several viruses, including 
MERS-CoV, and reduces RAS activity in rodent thoracic aorta 
and a model of nonalchoholic fatty liver disease [21-23]. AEAE 
and camostat inhibit the function of SARS-CoV S-protein and 
prevent Cv19 entry into cells [24,25].

Drugs with in vitro toxicity against SARS-CoV2 have been 
characterized as either translation inhibitors or σ receptor li-
gands [17]. The fits of compounds in the latter class (listed in 
Table 1) do not identify a common pharmacophore, as peptide 
fitting-points and distances between fitting-points are quite dif-
ferent. Although these compounds differ in structure, proper-
ties and fitting characteristics, they relate to each other through 
similarity to the peptide VRD. The σ receptor is described as an 
enigmatic evolutionary isolate, with poorly defined regulation by 
a remarkably diverse range of ligands [26]. There is a marked 
contrast between classical pharmacologic receptors and the pro-
tein targets of σ ligands that include enzyme structures. Pharma-
cophore mapping of over 8500 compounds in a GPCR-focused 
chemical library has recently created a model of the σ1 receptor, 
described by four key chemical features of the ligand-binding 
pocket alongside eight exclusion volume spheres [27]. Of the 
other drugs investigated here, verapamil, amiodarone, haloper-
idol, silibinin, genistein and thalidomide are active in inhibiting 
the infective or replicative phases of a variety of viruses [28-
32]. Nicotianamine is an ACE2 inhibitor isolated from soybean 
whereas AEAE, a blocker of S-protein-mediated cell fusion, is a 
synthetic compound [9]. 

Several 5-HT antagonists and the metabolite 5-hydroxyin-
doleacetic acid relate to the VRD peptide structure. One surpris-
ing public health finding of the Cv19 pandemic is the low sus-
ceptibility of children to Cv19, raising the possibility of a natural 
inhibitor to infection within this age group. Interestingly, 5-HT 
synthesis is highest in childhood, especially between the ages of 
2 and 5, declining to adult levels around 11 years of age [33,34]. 
Data obtained from rodent and cell culture systems demonstrate 
significant interaction between the serotonin and angiotensin 
systems. Serotoninergic dorsal raphe nucleus neurons are targets 
of ANGII; combined 5-HT/ANGII infusion reduces echocardio-
gram ejection fractions, causing a more aggressive remodeling 
of valves;  blunting of platelet aggregation responses by ANGII 
relates to loss of the 5-HT transporter (SERT) [35-37].

Minor changes in ACE2 molecular structure are known to 
interfere with the binding of SARs-CoV. Whereas natural muta-
tions within the RBD may not eliminate infection by SARS-CoV, 
a single point mutation at aspartate454 abolishes the association 
of the S1- protein with ACE2 [3,38]. Arginine and valine have 
been identified as variable residues within the RBDs of SARS-

CoV and SARS-CoV2 that interface with ACE2 [3]. The S-pro-
tein domain contains in excess of 3% arginine residues with 16 
valine-arginine sequences. 

In conclusion, the data presented demonstrate that many 
drug structures with antiviral effects on SARS-CoV2 share mo-
lecular similarity with a peptide sequence within the S-protein, 
and the same characteristics are evident within compounds as 
yet untested for antiviral properties. This may be indicative of a 
common affinity for a viral receptor-protein but does not neces-
sarily relate to the ACE2 binding site for the N-terminal residues 
of ANGII. 
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